Aberration corrected STEM by means of diffraction gratings.
نویسندگان
چکیده
In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. Here, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to remove arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.
منابع مشابه
Identification of magnetic properties of few nm sized FePt crystalline particles by characterizing the intrinsic atom order using aberration corrected S/TEM.
Hard-magnetic nanomaterials like nanoparticles of FePt are of great interest because of their promising potential for data storage applications. The magnetic properties of FePt structures strongly differ whether the crystal phases are face centered cubic (fcc) or face centered tetragonal (fct). We evaluated aberration corrected HRTEM, electron diffraction and aberration corrected HAADF-STEM as ...
متن کاملNew possibilities with aberration-corrected electron microscopy.
Unlike light microscopy, where resolution is diffraction limited, the achievable resolution of electron microscopes is limited by lens aberrations so severe that the practical resolution is orders of magnitude worse than the diffraction limit. About 10 years ago, the first practical electron lens spherical aberration correctors were developed, and in the past decade, their performance, versatil...
متن کاملBeta Value Coupled Wave Theory for Nonslanted Reflection Gratings
We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with diff...
متن کاملMultichannel grazing-incidence spectrometer for plasma impurity diagnosis: SPRED.
A compact vacuum ultraviolet spectrometer system has been developed to provide time-resolved impurity spectra from tokamak plasmas. Two interchangeable aberration-corrected toroidal diffraction gratings with flat focal fields provide simultaneous coverage over the ranges 100-1100 A or 160-1700 A. The detector is an intensified self-scanning photodiode array. Spectral resolution is 2 A with the ...
متن کاملExperimental setup for energy-filtered scanning confocal electron microscopy (EFSCEM) in a double aberration-corrected transmission electron microscope
Scanning confocal electron microscopy (SCEM) is a new imaging mode in electron microscopy. Spherical aberration corrected electron microscope instruments fitted with two aberration correctors can be used in this mode which provides improved depth resolution and selectivity compared to optical sectioning in a conventional scanning transmission geometry. In this article, we consider a confocal op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultramicroscopy
دوره 182 شماره
صفحات -
تاریخ انتشار 2017